
Inter-IP Malicious Modification Detection through
Static Information Flow Tracking

Zhaoxiang Liu
Kansas State University

Orlando Arias
University of Florida

Weimin Fu
Kansas State University

Yier Jin
University of Florida

Xiaolong Guo
Kansas State University

Abstract—To help expand the usage of formal methods in
the hardware security domain. We propose a static register-
transfer level (RTL) security analysis framework and an electronic
design automation (EDA) tool named If-Tracker to support the
proposed framework. Through this framework, a data-flow model
will be automatically extracted from the RTL description of the
SoC. Information flow security properties will then be generated.
The tool checks all possible inter-IP paths to verify whether
any property violations exist. The effectiveness of the proposed
framework is demonstrated on customized SoC designs using
AMBA bus where malicious modifications are inserted across
multiple IPs. Existing IP level security analysis tools cannot detect
such Trojans. Compared to commercial formal tools such as
Cadence JasperGold and Synopsys VC-Formal, our framework
provides a much simpler user interface and can identify more
types of malicious modifications.

Index Terms—SoC Protection, AMBA Bus System, Hardware
Trojan Detection, Formal Method

I. INTRODUCTION

The semiconductor industry has an urgent demand for
automated methods to detect and evaluate vulnerabilities in
System-on-chip (SoC) at the design stage. Interestingly, while
most of the hardware designs are crafted using HDL, security
verification tools that work at the HDL level is lacking [1].
For verification purposes, designers must convert their SoCs
into gate-level netlists for analysis purposes [2]. Unfortunately,
there are limitations to these approaches. High-level circuit
structures are lost in post-synthesis netlists as well as in high-
level software descriptions. The recovery of high-level circuit
structures is proven to be NP-hard and is an ongoing research
problem.

Another factor affecting the scalability of formal verification
at the SoC layer is the lack of well-defined security properties.
Commercially available platforms such as Cadence JasperGold
Security Path Verification (SPV) [3], Synopsys VC Formal
Connectivity Checking, and Synopsys Formal Security Verifi-
cation (FSV) [4] provide means of verifying SoC infrastructure.
These tools are developed with bug/fault detection in mind, and
rarely consider maliciously inserted logic.

To address these issues, in this paper we propose If-Tracker,
an automatic and efficient formal verification framework. If-
Tracker works at HDL level and is capable of checking security
properties of SoC-scale hardware designs. Our framework
leverages static information-flow tracking (IFT) to analyze the
interaction between IP cores that are attached to the same SoC
bus, trying to identify anomalies that can bypass individual
security checks.

In summary, the main contributions of this paper are:
• We present a scalable framework to statically identify

threats in SoC platforms at RT-Level. By parsing HDL
into an AST, we extract more information that can be used
for tracking, identification, and localization of anomalies.

• The introduction of If-Tracker, a CAD tool which can
parse Verilog HDL and automates security checks on the
design. If-Tracker models an SoC into a data-flow graph
and automatically infers interactions between IP cores.

• We demonstrate the efficacy of If-Tracker using an SoC
benchmark equipped with AMBA-AXI bus with a series
of concealed Trojans. We also compare the If-Tracker to
commercial tools from Cadence and Synopsys.

II. BACKGROUND

A. Security Formal Verification on SoC
Information-flow tracking (IFT) is a powerful approach to

protect confidentiality in a hardware system by detecting the
sneaky path of sensitive information leakage. IFT associates
data or operations with labels/taint indicating the security
levels. Various secure RTL programming languages, such as
Caisson [5], Sapper [6], and SecVerilog [7], have been de-
veloped to check the noninterference property. When applying
these solutions, users must learn the complex tag system and
manually denote labels standing for the trust level to specify
the information flow policy. QIF-Verilog is later proposed to
protect the confidentiality with only one tag type [8]. It extends
one security label from standard Verilog. However, QIF-Verilog
can only protect confidentiality and validate IFT properties at
IP level.

B. Formal Verification Tools for Security Property Checking
Existing commercial tools provide security property check-

ing based on the IFT approach, such as JasperGold Secruity
Path Verification (SPV), Synopsys VC Formal Connectivity
Checking (CC) and Synopsys Formal Security Verification
(FSV) [3], [4]. Several of recent formal verification frameworks
were proposed leveraging these commercial tools [9], [10].
However, these commercial tools may not be effective nor
efficient in detecting different types of security threats. Taking
JasperGold SPV as an example, the taint propagation performed
in SPV relies on simulation. It results in the issue that malicious
modifications with special structures may either bypass the
verification or significantly increase the time consumption
for property proving. These limitations associated with the
commercial tools are discussed at Section IV in detail.

III. METHODOLOGY

A. Adversarial Model

We assume that the adversary is capable of inserting mali-
cious logic at the design phase of the IC lifecycle. For example,
a rogue agent in a third-party design house may manipulate
RT-Level hardware descriptions and insert hardware Trojans
or backdoors [11]. Such Trojans or vulnerabilities can bypass
security checks at IP level since they do not perform malicious
behaviors as individual IPs. Instead, malicious behaviors will be
triggered when these IPs are integrated into an SoC platform.
Signals for triggering Trojans may come from a counter,
input vectors, or certain physical conditions. Once activated,
the inserted malicious logic may sniffer information in the
bus, cause denial-of-service (DoS) to hardware IPs, or block
communication channels. Furthermore, vulnerabilities may be
introduced by designers unintentionally due to the lack of
security knowledge during the development and integration of
an SoC [12], [13], [14].

B. Workflow

The basic workflow of If-Tracker is shown in Figure 1. The
HDL code of an SoC design is parsed into an abstract syntax
tree (AST). Then we navigate the AST tracking assignments,
as well as the scope and conditions of those assignments. The
assignments and their dependencies are then merged into a
single, directed data-flow graph (DFG).

Fig. 1: Workflow of the proposed If-Tracker framework.

The directed graph consists of signal nodes and temporary
nodes. Signal nodes represent variables declared in the HDL
code. Temporary nodes are auto-generated by the developed If-
Tracker, which represent the semantics of statements affecting
the interaction of signals, such as Boolean expressions, if-
statements, decomposition assignments, etc. A propagation path
including these nodes reflects the relationship between the
target node and the source node. Furthermore, the propagation
conditions can be auto-analysed through If-Tracker.

Getting the directed DFG, security properties or check rules
are provided by specifying the taint sources and targets in the

Condition1 : WSTRB[byte_index] == 1 = true
Condition2 : slv_reg_wren = true
Condition3 : RESET == 1’b0 = false

Fig. 2: Propagation conditions of SHA256Condition1 : WSTRB[byte_index] == 1 = true

Condition2 : slv_reg_wren || 1 = true
Condition3 : RESET == 1’b0 = false

Fig. 3: Propagation conditions of RAM

IFT. Analyzing all those constrains in a path, the security rules
can then be verified.

In this paper, we design and apply four types of information
leakage properties. These four properties with vulnerabilities
described in natural language are listed in Table I to address
various threats/vulnerabilities. For these properties, we apply
them in detecting the threats demonstrated in the Section IV,
where Property 1 is for case study 1, Properties 3 and 4 are
for case study 2, and Property 2 is for case study 3.

IV. EXPERIMENTAL RESULTS

A. Case Study 1: Eavesdropping Attack

1) AXI4-Lite SoC: Our experimental benchmark employs an
AXI4-Lite based SoC with a 32 bit shared bus interconnection.
The SoC integrates an open-source pico RISC-V CPU as the
master IP core and two slave IP cores, i.e., a RAM and a
SHA256 crypto core. Data transactions on shared bus based
SoC face the risk of data being snooped by malicious third-
party IPs as the shared bus is connected to all IPs. It is assumed
that the RAM module contains malicious logic – a Trojan
is inserted into the RAM’s slave interface. As a result, the
malicious RAM module constantly snoops the shared bus data
and copies the data inside the module.

2) Experiment on AXI4-Lite Benchmark: The hardware Tro-
jan in RAM’s slave interface eavesdrops the bus communi-
cation, which means that data needs to propagate from the
CPU to both SHA256 and RAM modules at the same time.
By extracting the propagation conditions and checking their
conjunctions, our framework can detect this attack.

Since the data leakage potentially occurs on the write data
channel, our experiment specifies the CPU’s WDATA as the taint
source to track the signal propagation. When a write transaction
is initiated, WDATA will propagate taint to the SHA256 registers
and RAM. Using If-Tracker, four paths are detected from CPU
write data port to each IP module. These four paths are similar
because the slave IP follows the AXI protocol to read data from
the bus byte by byte and each path represents one byte signal
propagation. Furthermore, AXI interconnect is designed with
the purpose of connecting CPU to slave IPs. The detected paths
just prove this functionality. Namely, the malicious behavior
cannot be addressed by only checking the path existence.

In this case study, malicious modification is detected by
analyzing the dependency of propagation conditions using the
developed If-Tracker. Figure 2 lists three conditions of the taint
propagation from the bus to SHA256 module.

TABLE I: Security properties for addressing threats. In the table, BM: Bus Manipulation

Vulnerability Malicious Modification Security Property (Prop)

1. Bus eavesdrop-
ping

When a master device writes to a specific IP, another
malicious IP eavesdrops information illegally through the bus

1. When a master device is writing data to a specific IP through SoC
bus, no other IPs should be in the status of accepting data from the bus

2. Sneaky path When triggered, a sneaky path will leak information or
breach the signal integrity

2. Reachability is checked from the master processor write output port
to assets under protection

3. BM with signal
replacement

Replace the sensitive signal by a constant value in the middle
of the data transaction via AXI bus

3. Taints from all sources must be propagated to the targets

4. BM with extra
logic insertion

Insert extra logic between the sensitive signal and the trans-
mission target inter AXI bus

4. Taint propagation starts from targets and then propagates in an inverse
way. Finally, the taints arrive in areas outside of the sources

Condition1 ensures that the byte on the bus has valid infor-
mation; Condition2 ensures that the write enable signal for the
peripheral register is asserted; and Condition3 requires that the
reset signal is deactivated. If all conditions are met data can be
written to the memory mapped SHA256 register.

Note that signal WSTRB is sent from CPU. Two slave
IPs receive the same signals from the CPU all the time.The
SLV_REG_WREN signal acts as a write enable for the mem-
ory mapped register and must be asserted to enable a write
transaction. When routing traffic, the interconnect asserts the
SLV_REG_WREN for the IP being accessed, selecting the
desired IP. The corresponding path from bus to RAM is shown
in Figure 3 and only the Condition2 is different from the
SHA256 path.

In our design, the propagation condition in RAM path was
changed to SLV_REG_WREN || 1’b1, which leaves the RAM
writable regardless of how the interconnect routes the write
request. This results in the two paths propagation constraints
being satisfied at the same time. Therefore, all propagation
constraints of the two paths can be satisfied at the same time,
which means that there is a data leakage from the bus.

B. Case Study 2: TrustZone Attack

1) Malicious Interconnection in TrustZone: Benhani et al.
demonstrate three different attacks to maliciously modify the
interconnection parts by tampering with the second bit of the
ARPROT signal in [14]. The first attack cuts the connection
of ARPROT[1] between the master and slave interfaces. The
slave side receives a permanent 1’b0 on ARPROT[1]. This
causes all read transactions to the core to be considered as
secure. The data would be leaked from the slave side due to this
non-secure visit. The other two attacks utilize combinational
logic on the ARPROT[1] by inserting an AND gate or a
multiplexer. These serve as a trigger condition to arbitrarily
make transactions act as if they are secure.

2) Experiment on AXI-Interconnect of TrustZone: The devel-
oped If-Tracker can detect malicious modifications to ARPROT
in all three of the scenarios mentioned above. If no hardware
Trojan is inserted, our tool finds one direct path in the 3 bit
signal. However, if we tie a bit of ARPROT to ground to force
transactions to be recognized as secure, then If-Tracker detects
a second source, indicating the presence of malicious logic. If-
Tracker further recognizes that a 2 bit signal is propagated from
the source but a total of 3 bit reach the destination, providing
yet another indication of the conflict. For the event where extra
logic is added to the AWPROT signal through an extra gate or

a multiplexer, If-Tracker detects four source nodes instead of
the expected single node, indicating unintended or malicious
logic. By backtracking the path, If-Tracker can determine the
exact source of the modifications, showing what operations are
taking place as well as their locations in HDL source files.

C. Case Study 3: Counter-based Trojan Attack

1) AXI4-Lite Delayed attack: Hardware Trojans tend not to
be triggered immediately, and satisfying the trigger of a Trojan
may take hundreds or thousands of clock cycles. It is a concern
in the dynamic analysis of circuits, where one clock cycle of
circuit simulation often requires minutes or even hours. The
time cost to detect such a Trojan may be unacceptable. To
mimic this situation, we build a three clock cycles delay based
Trojan trigger on the AXI4-Lite SoC as shown in Trojan design
1. Sensitive information is leaked after a few clock cycles and
a covert channel is created for the secret transmission. Our
framework would be tested on this Trojan.

Trojan Design 1 Information leaked in 3000 clock cycles

1: Every three clock cycle count++
2: if count == 10000 then
3: out← sensitive data
4: end if

2) Experiment on AXI4-Lite Delayed attack: Delay-based
Trojans set up a covert path for the transmission of sensitive
data. Our method checks for the presence of a transformation
channel to help determine the data leakage opportunities pro-
vided by the illegal path. The framework sets sensitive data
as the source signal and an output port as the target. The
framework verifies the reachability between the source and
the target and the collection of constraints on the information
flowing through the node is extracted.

V. COMPARISON WITH COMMERCIAL TOOLS

Our experiments are conducted on a dual AMD EPYC 7401
processor with 264GiB memory. Table II summarizes how our
tool performs versus commercially available tools.

In the first column, we list the benchmarks mainly including
AXI4-Lite SoC and TrustZone interconnection. Taint source
and target are in columns 2 and 3. The malicious modification
for each benchmark is shown in the fourth column. The Prop-
erty column includes the utilized security properties designed
in Table I. The detecting results of different applications are put
in the rest of columns where time consumed and performance

TABLE II: Detection results and comparison with commercial tools. In the table, PE: path exists, CE: conditions extracted, PNE:
path not exists, CC: Connectivity Checking, FSV: Formal Security Verification, SPV: Security Path Verification. All times given
in seconds, RL: Reach Time Limit.

Benchmark Source Target Behavior Property If-Tracker CC FSV SPV
Time) Perf Time Perf Time Perf Time Perf

AXI4-Lite CPU WDATA RAM Eavesdropping Prop1 0.43 s PE CE 1.00 s PE 102 s PE 26.2 s PE
AXI4-Lite Asset Covert output Sneaky path Prop2 0.16 s PE CE 1.00 s PE RL N/A RL N/A
TrustZone Master ARPROT Slave ARPROT Cut ARPROT Prop3 0.01 s PE CE 1.00 s PE CE 13.0 s PE N/A N/A
TrustZone Master ARPROT Slave ARPROT And ARPROT Prop4 0.01 s PE CE 1.00 s PE CE 13.0 s PE 0.02 s PE
TrustZone Master ARPROT Slave ARPROT Mux ARPROT Prop4 0.01 s PE CE 1.00 s PE CE 13.0 s PE 0.02 s PE

are displayed. All threats are detected by our framework with
higher efficiency.

In the eavesdropping attack from case study 1, Synopsys
CC can locate the path but cannot extract the conditions. The
limitation of CC is that conditions cannot be derived when the
path involves flip-flops [4]. Synopsys FSV and Cadence SPV
take longer to formally prove the reachability from the source
node to target node. Since little information is involved in these
paths, sophisticated malicious behavior like eavesdropping can-
not be addressed by FSV and SPV. That is, only if both path
exists (PE) and conditions extracted (CE) are obtained from the
results, the threat can be handled.

At the second row, sneaky path attack from case study 3 is
a typical taint propagation model, where Property 2 would be
formally proved if taint source reaches the target. This counter-
based Trojan will only be triggered after ten thousand clock
cycles. As a result, both FSV and SPV reach the time/cycle
limit during the proving process (we set one hour as the
maximum running time). Again, due to the flip-flop issue, CC
can only prove the path existence and list the path. In the
developed If-Tracker, the conditions are extracted as symbols
and then formally analyzed. Thus, the time consumed is not
influenced by the number of counters and clock cycles.

As the the rest rows, for detecting TrustZone attack from case
study 2, both If-Tracker and CC can identify the modification.
CC is also able to extract conditions since the malicious
modification is the combinational logic. Even though SPV and
FSV can validate the reachability or PE in most cases, for
identifying the anomaly, both of them need the user to do
further waveform inspection.

The results presented in this paper indicate that malicious
behaviors in SoC are sophisticated so that various kinds of
attacks cannot be addressed by only checking reachability or
path existence. Considering the propagation conditions makes
the IFT be more precise and efficient by associating multi-
ple propagation paths and avoiding unnecessary computation
burden. Therefore, If-Tracker discovers the potential malicious
tampering through extracting the propagation path topology and
the conditions with a much higher performance.

VI. CONCLUSION

To secure SoC designs, we present If-Tracker, an HDL
level automatic IFT-based security verification framework to
discovers the potential malicious tampering through extracting
the propagation path topology and the conditions with a much

higher performance. We compare If-Tracker with the state of
the art tools and prove our tool can better address different
types SoC level attacks.

ACKNOWLEDGMENTS

Portions of this work were supported by the National Science
Foundation (CCF-2019310, CCF-2028910).

REFERENCES

[1] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, “Word-level
predicate-abstraction and refinement techniques for verifying rtl verilog,”
IEEE transactions on computer-aided design of integrated circuits and
systems, vol. 27, no. 2, pp. 366–379, 2008.

[2] C. Wolf, “Yosys open synthesis suite,” 2016.
[3] Cadence, Security Path Verification App User Guide, December 2020.
[4] Synopsys, VC Formal Verification User Guide, December 2019, Version

P-2019.06-SP2.
[5] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,

and B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” in ACM SIGPLAN Notices, vol. 46, no. 6. ACM,
2011, pp. 109–120.

[6] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: A language
for hardware-level security policy enforcement,” in ACM SIGARCH
Computer Architecture News, vol. 42, no. 1. ACM, 2014, pp. 97–112.

[7] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” ACM SIGPLAN
Notices, vol. 50, no. 4, pp. 503–516, 2015.

[8] X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin, “Qif-verilog:
Quantitative information-flow based hardware description languages for
pre-silicon security assessment,” in 2019 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 2019, pp.
91–100.

[9] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and M. Tehra-
nipoor, “Hardware trojan detection through information flow security
verification,” in 2017 IEEE International Test Conference (ITC). IEEE,
2017, pp. 1–10.

[10] N. Farzana, F. Rahman, M. Tehranipoor, and F. Farahmandi, “Soc security
verification using property checking,” in 2019 IEEE International Test
Conference. IEEE, 2019, pp. 1–10.

[11] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Automatic code converter
enhanced pch framework for soc trust verification,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 12, pp.
3390–3400, 2017.

[12] K. Xiao, A. Nahiyan, and M. Tehranipoor, “Security rule checking in ic
design,” Computer, vol. 49, no. 8, pp. 54–61, 2016.

[13] J. He, X. Guo, T. Meade, R. G. Dutta, Y. Zhao, and Y. Jin, “Soc inter-
connection protection through formal verification,” Integration, vol. 64,
pp. 143–151, 2019.

[14] E. Benhani, L. Bossuet, and A. Aubert, “The security of arm trustzone
in a fpga-based soc,” IEEE Transactions on Computers, vol. 68, no. 8,
pp. 1238–1248, 2019.

